
MCC Technical Report Number ACA·HI-406-88

AN INTRODUCTION TO
HITS: HUMAN INTERFACE TOOL SUITE

James Hollan, Elaine Rich,
William Hill, David Wroblewski, Wayne Wilner,

Kent Wittenburg, Jonathan Grudin, and Members of the
Human Interface Laboratory

MCC Nonconfldentlal
December 1988

MCC
TECHNICAL

REPORT

MCC Technical Report Number ACA·HI-406-88

AN INTRODUCTION TO
HITS: HUMAN INTERFACE TOOL SUITE

James Hollan, Elaine Rich,
William Hill, David Wroblewski, Wayne Wilner,

Kent Wittenburg, Jonathan Grudin, and Members of the
Human Interface Laboratory

MCC Nonconfldentlal
December 1988

Abstract

Computers are the most plastic medium yet invented for the representation and propagation of
information. They can mimic the behaviors of other information media and manifest behaviors
not possible in any other medium. They provide us with interactive representational media of
potentially revolutionary consequence. To realize the communicative potential of these new
computationally-based media we must understand how to employ them to construct collaborative
multimedia interfaces to high-functionality systems.

In this report, we introduce the Human Interface Tool Suite, an integrated set of tools for the
construction of collaborative multimedia interfaces. Rather than documenting HITS as a user or
reference manual would, we explain the ideas that motivate the HITS research programme.

Microelectronics and Computer Technology Corporation
Advanced Computer Architecture

Human Interface Laboratory
3500 West Balcones Center Drive

Austin, Texas 78720
(512) 343-0978

Copyright c 1988 Microelectronics and Computer Technology Corporation

All rights reserved. Shareholders and associates of MCC may reproduce and distribute these
materials for internal purposes by retaining MCC's copyright notice, proprietary legends, and
markings on all complete and partial copies.

NT E R FACE B y M C C

AN INTRODUCTION TO
HITS: HUMAN INTERFACE TOOL SUITE

James Hollan, Elaine Rich,
William Hill, David Wroblewski, Wayne Wilner,

Kent Wittenburg, Jonathan Grudln, and Members of the
Human Interface Laboratory

Table of Contents

INTRODUCTION 1

HITS RESEARCH PROGRAMME..... 2
TOOLS THROUGHOUT THE INTERFACE BUILDING PROCESS 3
THE ROLE OF KNOWLEDGE IN HITS .. 6

Supporting the Run-Time Execution of the Interface 9
Supporting Interface Construction 1 0
Supporting Interface Design 11
Supporting Interface Evaluation 11
Supporting Collaboration: Tool Chains and Collaboration Profiles 12

HITS RESEARCH QUESTIONS 13
Multiple Active Interface Agents 13
Tools for Effective User-Centered Interfaces 14
Knowledge-Based Tools and lnterfaces 14
Future Research Positioning 14

BUILDING INTERFACES WITH HITS 14
BUILDING GRAPHICAL INTERFACES 15

Building Graphical Interfaces: Icon Editor 15
Building Graphical Interfaces: Graphics Editor 16
Building Graphical Interfaces: Pogo 17

BUILDING GESTURAL INTERFACES 18
Building Gestural Interfaces: Interactive Wori<surface · 19
Building Gestural Interfaces: Gesture Editor 19

BUILDING NATURAL LANGUAGE INTERFACES 20
Building Natural Language Interfaces: Lucy 22
Building Natural Language Interfaces: Luke 25

BUILDING COLLABORATIVE INTERFACES 26
Building Collaborative Interfaces: Conversation Tool 27

AN EXAMPLE APPLICATION: THE HITS KNOWLEDGE EDITOR 27
HKE IS IMPLEMENTED WITH HITS 28
HKE IS REPRESENTED IN CYC 29

THE HITS BLACKBOARD 29
THE BASIC BLACKBOARD 23
USE OF THE BLACKBOARD WITHIN HITS 31

SUMMARY 34

ACKNOWLEDGEMENTS 34

MEMEBERS OF THE HUMAN INTERFACE LABORATORY 35

REFERENCES 36

AN INTRODUCTION TO
HITS: HUMAN INTERFACE TOOL SUITE

James Hollan, Elaine Rich,
William Hill, David Wroblewski, Wayne Wilner,

Kent Wittenburg, Jonathan Grudin, and Members of the
Human Interface Laboratory

A tool is something that constrains some of the degrees of freedom of a medium in order to
manipulate the other ones better, and the computer is no tool in that sense; it is the uhimate
medium, because its content is other media. Alan Kay, 1982, House Subcommittee on Science,
Research, and Technology.

INTRODUCTION

Computers are the most plastic medium yet invented for the representation and propagation of
information. They can mimic the behaviors of other information media and manifest behaviors
not possible in any other medium. They provide us with interactive representational media of
potentially revolutionary consequence. To realize the communicative potential of these new
computationally-based representational systems we must understand how to fully exploit this
ultimate medium to provide collaborative support for the solution of complex problems. This
requires understanding how to construct collaborative multimedia interfaces to high functionality
systems.

A multimedia interface is one that supports more than one medium through which users and
computers communicate. Such an interface might support gestures, graphics, menus, natural
language, sketching, speech, touch, and video. A collaborative interface is one that exploits
knowledge about tasks, applications, interfaces, and users in ways that help users accomplish
tasks effectively. Collaborative interfaces interpret ambiguous inputs correctly in context, phrase
outputs in ways sensitive to users' situations, and provide advice on efficient ways to accomplish
users' goals. To act collaborat ively an interface must be integrated. Events and objects in one
part of the interface must be accessible in the other parts so that tasks can be split across
interface components as appropriate and stil l function with users in a collaborative and integrated
fashion.

In this paper, we introduce HITS (Human Interface Tool Suite) , an integrated set of tools now
under development in the Human Interface Laboratory at MCC. HITS supports both the
construction and run-time execution of collaborative multimedia interfaces. Rather than
documenting HITS as a user or reference manual would, this paper explains the ideas that
motivate the HITS research programme. The first section shows how our research programme
leads us to concern ourselves with (1) tools to support the complete interface design cycle, (2)
the role knowledge plays in the development of such tools and their integration, (3) a flexible

HITS Introduction 2

run-time execution scheme that supports multimodal interaction, and (4) a new metaphor, the
notion of a tool chain, that mediates the way we think about interfaces and the tools used to
construct them. The next section summarizes a set of research questions that we are addressing
with HITS. The third section, Building Interfaces with HITS, presents the suite's anchor tools,
characterizing in turn, tools for graphics, gestures, natural language, and collaborative aspects of
interface design. The fourth section, An Example Application, exemplifies integration of HITS
interface technologies in a knowledge editor application that includes knowledge-based display,
graphical views, collaborative angels, and natural language. The fifth section, the HITS
Blackboard, presents the innovative run-time architecture that makes possible the hallmark
integration characteristic of HITS designed interfaces. The final section summarizes the report.

Before beginning a discussion of the HITS research programme, let's explore an example of the
kind of interface that HITS is intended to produce. Consider the scenario depicted in Figure 1. In
the first panel the user, a designer of copier interfaces, sketches a prototype copier control panel
with a stylus on a flat interactive worksurface incorporated into the designer's desk. The system
recognizes the sketch and turns it into a collection of dynamic icons. During the evolution of the
control panel design, the system offers access to comments and suggestions concerning graphic
design principles relevant to the developing interface. The user employs natural language
phrases to describe and associate the components of the iconic interface with an ur.~derlying
simulation model. Then by touching the the control panel the user specifies the number of copies
to be made and activates the simulation by pressing the recently created Start Button. This
scenario currently runs on an experimental interactive worksurface 1 in our laboratory. Figure 2
lists the HITS tools used to construct this demonstration2, which makes use of many of the
interface components of HITS described in this paper. These include neural nets constructed
using our Gesture Editor, icons designed with our Icon Behavior Editor and configured with our
Graphics Editor, collaborative advice constructed using our Advisory System and made available
via Advice Angels, linguistic mappings made using Luke, and natural language understanding
employing Lucy our natural language system.

HITS RESEARCH PROGRAMME

HITS is a research project being pursued in the Human Interface Laboratory at MCC. The lab's
purpose is to develop the scientific and technological foundations for principled and efficient
construction of collaborative user-centered interfaces. This mission requires balance and
interaction between the laboratory's scientific and technological efforts. Science done in isolation
can lead to irrelevance, to the development of toy systems, and to clever ideas that have no
practical impact. Technological applications in the absence of sound theory can lead to clever
gadgets, perhaps important for a particular job, but unlikely to generalize to new situations. A
central tenet for the Human Interface Laboratory is the crucial importance of coupling scientific
and technological efforts. Productive tension between the two contributes to a balanced research
portfolio and advances our long range human interface research programme.

We coordinate research within the laboratory around the construction of an integrated interface
design environment to leverage our efforts and to focus the laboratory on a scale of project
appropriate to MCC. We envision the tools we are building as evolving from an integrated set of
human interface tools (HITS) toward a general user interface design environment (GUIDE) with
increasing amounts of intelligent support for the overall process of interface design. HITS and its
evolution into GUIDE are experimental vehicles for grounding, motivating, and coordinating our
scientific and technological efforts. They are intended to serve as prototypes supporting the rapid
implementation, exploration, and demonstration of new human interface concepts.

1The interactive worksurface is a horizontally mounted plasma display bonded with a high-resolution transparent
digitizer and incorporating infrared touch sensitivity.

2A video tape of this demonstration is available.

HITS Introduction

,--., =:=J LJ
:I 0 0 Q
0 Cl 0 ':J
0 OQl 0 0

c J r

I ~.::: ~::,,:::.. ... ,! ~~::·:::t:: . ~::;.! · .:~~~~:::t 1 1 Ult4t>

:=

D

-· ... to\. ooo i ·•- •· >IUJ

fl~r.~~~ ~IU

Li c=J

· ~ · ••• ••• e ---

r< ,~,,_, """"'""<·, .. =··-

il
.I

Figure 1: Copier Control Panel Sketch lnteriace Scenario.

'""""'""'· •'" ''""""'"'' ,,.,_.~ , .. , UI'JI I 1 :lll"lU

"·· ... -......... -·· h_ ,, ,., , .. ,

3

Our work is motivate by the belief that the advancement of interiace design necessitates
understanding how to build collaborative interiaces. Collaborative interiaces increase people's
productivity in computer-supported tasks by allowing them to work closer to their conceptions of
tasks, freeing them from irrelevant computer-oriented details. Advanced forms of collaborative
assistance will increase access to computer-mediated applications by a heterogeneous set of
users and provide interiaces that allow richer exploitation of the poweriul computational platforms
of the future. For interiaces to be cooperative and adaptive, they must have representations of
users' task, the languages of interaction, applications, and users. Thus, a substantial portion of
interiaces to future knowledge-based and other high-functionality systems will themselves be
knowledge-based .

A complete set of tools for building collaborative interiaces must support all phases of the
interiace design and construction process: design, implementation, run-time execution, and
evaluation. Figure 3 shows these stages and suggests examples of tools that might be provided
at each stage . Like many software design activities, interiace design and construct ion involve
iterative processes that rarely proceed in the linear fashion depicted in Figure 3. The delineation
of phases is intended primarily as an aid to exposition and description of HITS.

Tools Throughout the Interface Building Process
Tools that address the first stage, design, require information about how people conceptualize the
tasks supported by the interiace, and how particu lar interiaces address those conceptualizations.
Norman [1] refers to these two sides of the interiace as the User's Model and the System Image.
One way of understanding the human side of interiaces is to conduct protocol studies of people
periorming the tasks involved. Unfortunately, although such protocols can provide valuable
insights, collecting the data and analyzing them is very difficult. Thus, protocol analysis tools are

HITS Introduction

Gesture Editor

Icon Editor

4

i~==~=~=!=~~Z!~~~~~:==~~Advice Angels Luke

[·'"." ' "" THE ST ~T &uTTOH

!!U!'''t ····,
~~·, · nn

~1-l

0

"'"' (l<"f/IIX)~·f)

(UOE.!...ufT-Q) ((#<0'0) {ICSG) ' <STA/fT-Q>)) (I <SG> 1(.
UTT'ON.O J})))

Copter Interface Ed•t:or &'!!I ..._ ·--·~ •~--.. 1%I!1!J

~~~ 
'!>~f> 
o~e 
~ 

uu• -"•te 

ll!liii 
~ 
~ 

[ __ I 

" ~~~ ~ ::: ~ ~ :';. ~:;::·:~ ;~?::·~:::;!; .:..~" : ;:..: . 6 : ~·~ · ~~~:::,-?'• ,,..,.,, -

Figure 2: HITS Tools Used in Copier Control Panel Sketch Demo. 

appropriate components of HITS.3 

Lucy 

The implementation stage req ires a set of tools that corresponds to the various facets of the 

3Protocol analysis tools also have the potential of providing important support for the competitive argumentation 
[17] that underlies productive understandings of user tasks. 



HITS Introduction 

STAGE 

Interface 
Design 

Interface 
Run-Time 
Execution 

Interface 
Evaluation 

EXAMPLE OF TOOLS 

Protocol Analysis Tools 

Icon Editor 
GraJ?hical Builder 
DictiOnary Builder 
Advice Builder 

Graphical Presentation System 
Interactive Worksurface 
Natural Lan~age System 
Data CollectiOn Tools 

Data Analysis Tools 

Figure 3: Tools Throughout the Interface Building Process 

5 

interface. For example, building the graphical parts of the interface requires tools both for the 
construction of graphical objects and their dynamic behaviors, for their association with 
underlying applications, and for their integration into a complete interface. Building the natural 
language part of the interface requires tools to support the construction of a dictionary that links 
words to representations of objects in applications as well as tools to facilitate construction of 
syntax, semantics, discourse, and pragmatics components . Building an advisory system requires 
tools that support the definition of advisory strategies, the construction of systems capable of 
planning in specific application domains, and methods for delivering advice and support to users. 

The use of the completed interface requires run-t ime support for the various components of the 
interface. For example, the graphical part of the interface requires a presentation system that 
converts representations of graphical objects into device-level commands to draw objects and 
reflect appropriate dynamic state changes. If gestures are to be exploited as an input modality, 
then a system that recognizes and interprets them must be available at run-time. Natural 
language interaction requires a system that maps from natural language statements into an 
appropriate formal language (and back, if natural language generation is used). An advisory 
system requires systems that can execute the available advisory strategies to collaborate with 
users in accomplishing their tasks . 

Interface evaluation requires data about the use of the interface. This stage can be facilitated by 
incorporating data collection facilit ies into the run-time system and by providing data analysis 
tools . In addition, the tools and interfaces that comprise HITS need to record the appropriate 
data about their use to permit evaluations of HITS itself. 



HITS Introduction 6 

The final significant aspect of these tools is their linkage to earlier stages in the interface definition 
process. Tools for interface construction should be able to check the implementor's actions 
against previously established design constraints. The actions taken during the use and 
evaluation of an interface can be similarly associated with the design and construction stages that 
make these actions possible. This eases the task of finding the parts of the design or 
implementation that need to be modified during redesign or reimplementation. These linkages, 
and the resulting power that they provide, are possible only if tools are developed as related parts 
of an integrated environment. HITS employs a state-of-the-art knowledge representation 
language (CYCL [2]) to provide the basis for integrated development and run-time environments. 

THE ROLE OF KNOWLEDGE IN HITS 
The need for an underlying knowledge representation system follows directly from three important 
premises underlying the design of HITS: 

• Integrated Multimedia Interfaces: If we want an integrated multimedia interface, as 
opposed to an interface that happens to allow multiple forms of input and output, 
then the various modalities in the interface must be able to communicate with each 
other. For example, to support the scenario we described above, it must be possible 
for the icons that were created with the graphical interface to be accessible to the 
natural language system. This will happen naturally if all the interface components 
share a single formalism in which all accessible objects are represented in a unified 
way. We believe that a knowledge representation language is an appropriate 
formalism for this purpose, for reasons that will become clear as we continue. 

• Collaborative Interfaces: If we want a collaborative interface, then we must provide 
the relevant knowledge to support reasoning about user actions. For example, if we 
want to give effective advice to users, then the advisory system must have access to 
knowledge about how to produce effective advice. If we want to be able to interpret 
ambiguous input such as, for example, English sentences, then we need knowledge 
about what it makes sense to say in a given context. Thus, in addition to the 
dynamic knowledge about interface objects, a collaborative interface must exploit a 
more static knowledge base about interfaces in general. 

• Interfaces to Knowledge-Based and High-Functionality Applications: The most 
important use for the kind of interface we are describing is to support application 
programs that have a great enough range of functionality that simpler interface 
structures are inadequate to provide effective access to the complete system. We 
expect next generation systems to have precisely this property. Thus, we are 
focusing on knowledge-based and other high-functionality applications. This means 
that, in addition to the interface-specific knowledge that we have just described, a 
HITS-based interface can expect to access some useful domain knowledge, shared 
with the application program with which it is communicating. 

The theme that emerges from these premises is the key role that knowledge plays, both in the 
tools that compose HITS and in the interfaces that the tools are used to construct. To be 
effective, this knowledge must be both integrated, to support communication among interface 
components and between the interface and the application, and modular, to make it easy to add 
specific information to support particular applications and their interfaces. Let's first consider the 
issue of integration. 

Figure 4 shows a fragment of an integrated, application and interface knowledge base that might 
occur in an electronic CAD system. The shared knowledge base contains the concept of a 
resistor. Associated with that concept can be any number of basic facts (not shown in the figure) 
about resistors and about how resistors can be used in electronic circuits. These facts are then 
available both to the application program (the CAD system) and to the interface. So, for example, 
the fact that a resistor is a rigid physical object may be used both by the CAD system in enforcing 
design rules that prohibit multiple physical objects from being in the same place at once, and by 



HITS Introduction 

t 

I 
I 

I 
I 

I 
I 

I f 
I I 

I I 

$ 
\ \ 
\ \ 
\ \ 
\ ~ 
\ 
\ 
\ 
\ 
\ 

~ 

Language Object I Mapping 
"resistor" ¥-,.1ft~ 
((Resistor :1 :x) -> leiectrical-resistance-component :x) 

(electrical-resistance :x %unknown)) 

Icon Editor Behavior 

.J\fV'v-
Resistor A 

Primitives: #<line resistor-line> 
Attributes: color #<static color map (:black)> 

position #<static position map (( 0.25 0.25))> 
visibility #<VIsibility map (t)> 

Net Recognizable Gesture 

~ 

Collaborative Strategy 

Figure 4: An Integrated Knowledge Base 

7 

the graphical display component of the interface in deciding on a screen layout that effectively 
displays a circuit. Similarly, both the CAD system and the advisory system can use knowledge 
about basic electronic properties of the resistor, such as Ohm's law. 

In addition to knowledge that can be used by both the application and the interface, the integrated 
knowledge base must also contain representations that describes the view of a resistor from the 
perspective of each of the various interface components. Several examples of this are shown in 
Figure 4: 

• To support a natural language interface, we need to know the words that can be 
used to refer to a resistor. In the figure , we show this for English and Japanese; 
other languages could, of course, be added. We also need to know that resistors are 
often referred to by a number that quantifies the amount of electrical resistance, e.g., 
'1 OK', instead of by a word. Electrical parts are often referred to by numbers and the 
magnitude of the number is frequently sufficient information for people to know 
whether the speaker means resistors , capacitors , or some other type of component. 

• To support flexible graphical interfaces, we need to know standard symbology. Two 
standard symbols for resistor are a number followed by a capital Greek letter omega 
(Q) and a zigzag of about seven line-segments. Users expect to write, say, read, 
and hear such symbols rather than the word 'resistor' or pictures of physical 



HITS Introduction 

resistors. The size, color, and orientation of such symbols as shown in an interface 
are likely to differ from the size , color, and orientation of resistors in the knowledge 
base. On the other hand, the position of such symbols may reflect the position of 
resistors in some larger context. 

• To support collaboration, we need not only knowledge about how this system allows 
users to manipulate resistors, but also knowledge about how people think about 
resistors: the different ways they conceptualize them, the kinds of problems that can 
arise in the use of resistors in circuit design, and possible misconceptions about the 
roles and properties of resistors. 

8 

Returning now to the issue of modularity of knowledge in HITS, it becomes useful to look again at 
Figure 3 and consider knowledge from the point of view of when it is created and used. This 
reveals two categories of knowledge. The first is knowledge that supports interface design and 
implementation (boxes one, two, and four in the figure) . It is, of course, possible to construct from 
scratch an interface of the sort we are considering by relying only on one's intuitions and 
experience as a source of good design principles and by hand-coding all of the necessary 
interface components. But the cost of constructing such an interface can be reduced and the 
quality of the resulting interface increased if relevant knowledge bases are contained within HITS 
and are exploited by the interface builder at interface construction time. A key theme of HITS is 
to make an increasing amount of this knowledge available to tool users. Examples of the kinds of 
knowledge that can be useful here are: 

• Presentation Knowledge: how to depict information in context and to provide 
context sensitive manipulation methods. 

• Graphical Knowledge: descriptions of icons, their behaviors, and graphical 
constraints. 

• Gesture and Sketch Recognition Knowledge: mechanisms that allow the system 
to recognize gestures4 and sketch-based forms of interaction . 

• Natural Language Knowledge: rules that describe the syntax of a language and 
rules that describe systematic relationships between words in the language and 
concepts in a knowledge base . 

• Design Knowledge: depictions of design knowledge of various types of interface 
techniques, such as graphical design principles. 

• Advising Knowledge: general facts about effective advisory strategies and more 
specific facts about the interfaces constructed with HITS tools . 

• Data Analysis Knowledge: general knowledge of statistical and descriptive 
procedures for analyzing data, as well as more specific knowledge about how 
different kinds of data might be used to evaluate interfaces implemented with HITS. 

Because most of this knowledge is about interfaces, rather than about specific applications, most 
of it is portable across application domains . The generality of this knowledge means that one 
emphasis in building HITS is on the capture and representation of this application independent 
knowledge within HITS. 

Continuing with the perspective of when interface knowledge is created and used, a second 
category can be identified. It contains knowledge that supports the run-time use of an interface 
(the third box in the Figure 3) . Some of this knowledge is domain-independent, some is not. This 
knowledge can be further subdivided on the basis of when it is created. Static knowledge must 
be available at run-time but can be created any time prior to then. The domain-independent parts 
of this knowledge can be provided as part of HITS. For the domain-dependent parts , HITS 

4 1n our system this is implemented using neural networks. 



HITS Introduction 9 

contains tools to assist in knowledge acquisition. Dynamic knowledge about a particular user and 
a particular user-system interaction must be created at run-time by the interface run-time system. 
HITS provides run-time modules that create this knowledge using representations that are 
consistent with the other knowledge bases that HITS provides and supports. 

One way to summarize this overview of knowledge in HITS is to say that HITS supports an 
integrated knowledge base. The knowledge itself covers a broad range of topics, all of which 
impinge in significant ways on the design and use of a flexible interface. In addition, the role 
played by HITS with respect to the acquisition of this knowledge must be tailored to the generality 
of the knowledge itself. General, domain-independent knowledge is represented once and 
provided as part of HITS. Specific, domain-dependent knowledge cannot be provided that way. 
So, instead, the focus in HITS is on the construction of effective tools to support knowledge base 
development. 

We will now step backwards through each of the first three stages5 of Figure 3 and describe in 
more detail the knowledge and the tools that HITS contributes. 

Supporting the Run-Time Execution of the Interface 
The heart of HITS is a run-time system that supports collaborative multimedia interfaces. 
Components of HITS support the construction of this run-time system. We will talk first about the 
characteristics we require of run-time systems, and then, in succeeding sections, describe the 
HITS component tools that make such systems possible. 

A HITS-based run-time system has two parts: a set of modules that perfonn actions in the 
interface and a set of knowledge bases that those modules rely on. The processing modules and 
their associated knowledge bases must be separable enough that they can be used relatively 
independently, since not all interfaces will require all of the interface modalities that HITS 
supports. Some interfaces may not need natural language, for example; others may not need 
graphics. But it must also be possible to integrate components so that a single, coherent 
interface can be presented to an end user. As we mentioned eartier, this integration is 
accomplished in HITS by tying all the components to a common knowledge representation 
system. We assume a hierarchically organized frame system in which the interface objects that 
can be manipulated are defined. This may be augmented with assertional methods that pennit 
representation of facts about the current state of the application and the interface. 

The kernel of the HITS-supplied run-time system is a dialogue manager that handles both the 
user's input and the system's output. This dialogue manager performs low-level handling of input 
and output, and routes what it sees to appropriate components of the run-time interface system. 
It also builds a history of the interaction, and makes this history available to those interface 
components that need it. It is important not only that this discourse history capture events in all 
the modalities within the interface, but that it either be implemented as a single integrated history 
or that separate discourse histories be able to communicate. Examples of ways in which 
discourse history are used include: 

• Understanding English Sentences. Suppose the user says, "I just created a new 
icon. Now I want to copy it." To interpret the word it correctly requires that there be 
a history at least as long as this two sentence dialogue, since it must be recognized 
as referring to the icon that was mentioned in the previous sentence. Now suppose 
that the user simply says, "Copy the last icon I created." Assume that the user has 
been creating icons using the direct manipulation capabilities of a sketching interface 
like the one in the copier example. Now, to identify correctly the referent of the the 
phrase "the last icon I created," requires a dialogue model that also contains a record 
of the user's actions within the sketching system. These kinds of actions emphasize 
the need for a dialogue model that captures multiple interaction techniques. 

5Specialized HITS tools to support the fourth state in Figure 3 have not been developed yet. 



HITS Introduction 

• Understanding Gestures. Suppose a user indicates with a gesture, perhaps a 
shake of a stylus or a finger, that the system has incorrectly identified a portion of a 
sketch. To respond appropriately to this it is necessary to have a model not only of 
the user's actions but also of the system's actions. 

• Generating Appropriate Advice. Suppose a user asks, "What went wrong?" In 
order to answer such a question, it is necessary to be able to look at the last several 
interaction events and to explain the actions that the system took. 

• User Modeling. This dialogue model should provide advisory strategies with 
information about the commands that are and are not understood by the user, based 
on the user's patterns of usage. In addition to user modeling the history should also 
support disambiguating actions for which multiple interpretations might exist, such as 
whether a "delete" request associated with a mouse click is meant to refer to a single 
icon or a larger configuration of objects. 

• Critiquing and Evaluating Tool Use. The discourse history can be used to detect 
inefficient use of tools, either by the system (leading to coaching or critiquing), or by 
human protocol analysts. 

Supporting Interface Construction 

10 

The only parts of an interface run-time system that HITS can provide directly are those that are 
domain-independent. Domain-dependent structures must be built for each new application 
interface, so the best support HITS can provide is a suite of tools that enable the efficient 
implementation of those structures.6 Each tool in HITS is designed to support the construction of 
one facet of the interface. Just as the run-time systems in HITS must be both modular and 
integrated, so too must be the construction-time tools. HITS uses the same approach here as it 
did in the structure of its run-time support: it ties all the tools together through a single knowledge 
representation system. By doing this, we facilitate the construction of the sort of unified 
representation of application and interface knowledge demonstrated in the copier control panel 
example. 

The fundamental notion behind all the HITS construction tools is that interface manifestations of 
objects are conceptually tied to the representation of those same objects in the application 
knowledge base in ways such as those shown in Figure 4. This suggests that the way to support 
building interface knowledge is to couple that process with the process of building the application 
knowledge base. There are several ways that this can be done: 

• Support the explicit statement of interface knowledge by the interface builder. This 
approach, in turn, has two facets, both of which are currently used in HITS: 

• Build interface entities and allow the tool to build the associated application 
objects. This approach is illustrated by Pogo, a system described below for 
building graphical objects. 

• Build application knowledge base objects and allow the tool to build the 
associated interface entities. This approach is illustrated by Luke, another 
system that is described below. 

• Support the implicit acquisition of interface knowledge as a task is being performed. 
This approach is illustrated by a neural net approach to the recognition of gestures, 
another system that will be described later in this section. 

• Support users of HITS by providing design expertise which may complement their 
own knowledge and assist them in maintaining interface consistency. This approach 

6We do envision that portions of new application interlaces will frequently be derived from copying and tailoring 
components from existing applications that are similar. See also the discussion of Tool Chains below. 



HITS Introduction 

is illustrated by Designer [8], a system for critiquing graphical views based on 
representations of graphical design principles. 

11 

If we consider this close coupling of the tasks of building an application knowledge base and of 
building corresponding interface knowledge bases, and if we also acknowledge the important role 
that application knowledge can play in a collaborative interface, it becomes tempting to view the 
entire knowledge base construction problem as an interface building issue_. Thus, one approach 
we could take would be to include in HITS a general purpose knowledge editor and then both the 
application and the interface knowledge could be built at once. Because of this and because of 
the importance of knowledge editing to the design of HITS, we are building HITS around a 
general facility for editing knowledge bases. A user HITS can employ that system directly to 
create representations of interface knowledge. In addition, we are augmenting that system in 
several ways that are described below. One goal of these additions is to make it easy to create 
the kinds of interface mappings shown in Figure 4. 

Supporting Interface Design 
Fundamental to the design of effective interfaces is understanding the cognitive tasks that will be 
supported. This means that one must understand the particular tasks that users will employ an 
interface to accomplish as well as the larger setting within which those tasks are situated. In an 
important sense an interface is a reification of the designer's view of users' tasks and associated 
task settings. To take a user-centered approach to interface design means taking a deep look at 
users' real tasks, related tasks, and the larger personal and organizational contexts in which the 
tasks are situated. 

Understanding users' tasks means having a detailed model of them and of users' conception of 
them at a level that permits an effective instantiation of interfaces to support them. The analysis 
of protocols collected from users of systems or from the performance of tasks that interfaces are 
being designed to support is a key technique to assist in constructing the detailed models 
required. The importance of protocols and the current lack of facilities to assist with their 
analyses motivates us to include a set of protocol collection and analysis tools within HITS. The 
view of protocol analysis being taken is thatut is a form of competitive argumentation [17] in which 
one wants to provide structure to and annotation of a protocol. Tools are required to support 
maintaining multiple theories about the protocol [13], viewing of the analysis at multiple levels, 
and retrieving annotated segments that match flexible retrieval specifications. 

Another aspect of supporting interface design is providing design expertise that complements that 
of users of HITS. An underlying premise is that each of the tools should incorporate 
representations about their own use and about types of expertise that users might find useful. 
For example, as mentioned above , the tool to help one form mapping rules between words in a 
natural language portion of an interface to concepts in a knowledge base has a representation of 
lexical semantics that permits it to offer alternative mapping rules as well as assist users in 
maintaining mapping consistency in a large knowledge base. As another example, graphical 
tools can be augmented with the ability to provide critiques according to graphic design principles. 
In all of these cases, the ability to support design is facilitated by our commitment to an 
underlying integrated knowledge base. 

Supporting Interface Evaluation 
The discourse history built from the sequence of events pooled across interface modalities can 
serve as a powerful data base for evaluating the use of HITS and the use of interfaces built with 
HITS, in addition to serving the run-time functions described elsewhere in this report. In addition 
to a history recorded by the system at run-time, protocols of user-system interaction may be 
recorded simultaneously by external means (such as video or audio taping); in addition, other 
data may be generated following an interaction, either by automated analysis programs or by a 
human protocol analyst. 

Although the design of our protocol collection and analysis system is in early stages, the 
evolutionary nature of the HITS tool chain , described below, requires a flexible and extensible 



HITS Introduction 12 

approach to the handling of user-system interactions . Prior to run-time, the user of the protocol 
collection system may indicate which data is to be converted to the common format used by the 
facility and preserved permanently, where the run-time system would otherwise discard it. For 
example, the record of the lowest-level user actions -- mouse or stylus movements, button and 
key presses -- are of less interest to the run-time system than the higher-level actions they 
initiate. But at times this level of information is needed to understand user actions or 
misunderstandings, and under certain circumstances this level of "raw input" might be directed 
back into the system to "replay" a user session. 

In examining an interaction, a protocol analyst may view, search, annotate, and categorize the 
collected data, perhaps carrying out statistical analyses and constructing alternative models of 
the interaction. Such analyses may aid in evaluating use of a tool or interface, or may provide 
knowledge of user tasks and common misunderstandings that will contribute to the construction 
of critiquing, advising, and user modeling systems. 

Supporting Collaboration: Tool Chains and Collaboration Profiles 
In addition to supporting the sequence of processes that must occur in the design of a particular 
interface, HITS supports the idea of a tool chain, in which general tools can be used to craft more 
specific ones, that can in turn be used to produce tools or to create specific application interlaces. 
The idea of a tool chain is a powerful one because it enables collections of activities to be done 
once for entire families of applications rather than requiring them to be duplicated for every 
member of the family. So, for example, a HITS user might use HITS to produce a new set of 
tools HITS2 hys-sys• that is specialized for building interfaces to programs that simulate physical 
systems. Th1s new tool set differs from HITS in that it contains a set of graphical icons that have 
been designed to display parameters of such simulations, appropriate words (such as 
momentum, mass, density, etc.) in its natural language lexicon, and knowledge about how to 
display complex simulations effectively using successively deeper levels of detail. Now another 
tool developer can use HITSphys-sys to create an even more specialized set of tools HITSauto for 
building interfaces to simulat1ons of automobiles. This new tool set has been further augmented 
with icons and lexical entries for cars and their components. Now additional users can use 
HITSauto to create interfaces to various automobile simulat ion programs. 

It is easy to see how the notion of tool chains can be applied to any application domain. For 
example, the basic HITS tools could be used to create a set of specially tailored tools for 
constructing interfaces for new automated teller functions (e .g. loan applications). One might first 
create a general HITSsanking containing a knowledge base of information appropriate to banking 
applications and a set of interface components that manifest the specific interface "look and feel" 
required by a given corporation. Notice that at each link in the tool chain we empower users with 
less interface design and system level knowledge with the ability to participate in the interface 
construction process. The tool chain notion fits well with our view of interface design as a multi­
person and multi-disciplinary activity. Linkage of the tools also provides mechanisms to collect 
data about usage and to permit the tools and the interfaces they are used to construct to be more 
readily modified in principled ways. 

Another idea supported by HITS is the notion of a collaboration profile. Each user of HITS can 
have a profile that influences the form of interaction with the system. This starts with a default 
profile and will evolve over time via modifications that the user makes to it as well as 
modifications the system makes as a result of the history of the user's interactions. It serves both 
as a user modeling component and as a communication mechanism between the user and 
system about the style of interactions with HITS. 



HITS Introduction 13 

HITS RESEARCH QUESTIONS 

Limitations of current interfaces are the major impediments to fully exploiting computation in the 
conceptualization and solution of complex problems. We take as premises that the two major 
courses of interface development in the future will be toward much more collaborative and 
adaptive interfaces, interfaces in which tasks are more effectively shared between users and 
computational systems, and toward interfaces that provide facile access to immensely more 
functionality than is present in current systems. Interfaces of the future will not only provide 
collaborative support to individual users of high-functionality systems but will also facilitate 
collaboration between individuals. These premises lead us to focus our research on the 
development of flexible, natural, multimodal interfaces, interfaces that approximate the ease and 
richness of person to person communication, and on how such interfaces can be effectively 
developed. This in turn has led us to HITS and the construction of an integrated environment for 
interface design. 

The research issues that we are addressing with HITS derive primarily from our interest in 
understanding how to develop collaborative interfaces to high-functionality systems. There are a 
host of specific research questions associated with each of the disciplines underlying our work 
that must must be answered if we are to be able to provide principled support for the design and 
implementation of integrated interfaces. Here we focus on those research questions that span 
the disciplines represented by the HITS effort. These include a core set of common issues that 
all interface modalities need to address. For example, to support collaboration the interface must 
make sense out of often highly ambiguous input data, whether the input data is a phrase in 
natural language or a gesture on our interactive worksurface. Similarly, the interface must 
present information in context sensitive ways that can be readily interpreted by users. Underlying 
these simple descriptions of collaborative interfaces are a set of difficult research issues. We are 
addressing a number of these in our research programme. 

Multiple Active Interface Agents 
We must support multiple active interface agents if the the interface is to be collaborative. 

• We need to support N-way communication among the agents, one of which is the 
user, some of which are application programs, and some of which are the various 
interface agents. It's this issue that has primarily motivated our development of a 
flexible blackboard-based control structure for HITS. 

• We need to support genuine mixed initiative dialogues. This is why we're concerned 
with a uniform treatment in the HITS blackboard of bot11 input and output interactions 
and why the issue of processes and control is centrally important. 

• We need to provide a coherent view to users of the various internal agents' individual 
communications. Although we might implement interfaces as a collection of 
independent agents, it must also be possible for the user to perceive the entire 
system as an integrated whole. Thus, we need to investigate strategies for 
managing coherent conversations. 

• If we're going to support integrated multimodal interfaces then we need to allow the 
modalities to interact at multiple levels of granularity (as opposed just to, say, 
complete commands). This is another major motivation for the use of a blackboard 
structure. It is also an important motivation for the use of a common knowledge 
base. Each of these devices provides integration capability at several levels of 
granularity. 

• We need a shared discourse history across agents if they are going to act in a 
coordinated way. • 



HITS Introduction 14 

Tools for Effective User-Centered Interfaces 
To understand our research agenda it is important to note that we're not just trying to build 
effective user-centered interfaces. We're trying to build a set of tools that will enable effective 
user-centered interfaces to be readily built . This has a number of implications. First, we need an 
ontology of interfaces and knowledge about interfaces. If we only wanted one interface, we 
wouldn't need to make this explicit. Having it in the heads of the human designers would be good 
enough. But to provide powerful design tools and to enable less skillful designer to build more 
effective intertaces, this knowledge must be explicit. Second, modularity becomes very important 
so that the right pieces selected from the building blocks provided by the general tool suite can be 
mixed and matched for each new interface. Third, we need to support the evolution of tool chains 
of more specialized HITS with specialized HITS knowledge bases and libraries. 

Knowledge-Based Tools and Interfaces 
Because of the importance of knowledge in both our tools and the interfaces that those tools help 
build, we cannot avoid dealing with questions of how large knowledge bases can be built and 
maintained. Thus, we must worry about supporting individuals in the knowledge base 
construction task. Our choice of a knowledge editor (HKE) as a demonstration platform for our 
work is motivated in large part by this concern. We must also consider supporting groups of 
people doing this task together. We need to support "corepresenting communities," which may 
span disciplines and experience levels. 

Future Research Positioning 
In addition to the research topics that we are addressing in our work on the individual modalities 
supported by HITS, there are a host of research questions that HITS will enable us to consider in 
the future. These include the following : 

• Given that all of this technology is intended to make possible the construction of new 
kinds of interfaces, what are they particularly good for? How can we use this 
technology to build interfaces that help people get their jobs done? Which intertace 
modalities support which kinds of communications? What's the best general way to 
support the interleaving of modalities? 

• How can we provide efficient implementations of the general architecture that we are 
formulating? For example , how do we structure and index the blackboard and how 
do we specify control within the blackboard? 

• What building blocks should go into the general tool set? For example, are there 
"parsers" for common kinds of languages where languages are broadly construed to 
include gestures? Are there knowledge sources for common ways of structuring 
dialogues? Are there domain-independent forms of advice? 

• How can the individual modalities provide leverage for each other? For example , 
how might knowledge about current discourse context be used to influence the 
interpretation of a sketch? 

• What real advantages does an integrated knowledge base provide? 

BUILDING INTERFACES WITH HITS 

HITS consists of an integrated suite of tools. In this section we present a selective overview of 
the tools oriented towards characterizing their functionality and the knowledge that they rely on 
and provi9e. In subsequent §ections we describe a detailed application of HITS for knowledge 
editing and then explain the HITS blackboard system. The underlying knowledge base and 
blackboard system are the keys to the integration of HITS. 



HITS Introduction 15 

BUILDING GRAPHICAL INTERFACES 
The most effective graphical and direct manipulation interfaces [3, 4] are typically highly 
specialized to particular applications. Their appearance and functionality are peculiar to specific 
domains. Consequently, graphical interfaces should be built by people who have expert 
understanding of what people who use a particular application require, perhaps in conjunction 
with graphics design specialists. Rarely are such experts programmers, but they currently need 
to be in order to implement new interfaces. This is even made more difficult because interactive 
graphical interfaces are very complex programs to write. Our solution is to provide libraries of 
simple graphical components, methods of building complex graphics by composing simpler 
components, and techniques for coupling graphical behavior of components in an interface to 
numerical behavior of state variables in an application. Menu-driven editors write code for pieces 
of interactive graphical interfaces according to the items people choose from the libraries. 

Building Graphical Interfaces: Icon Editor 

The individual boxes, buttons, borders, and backgrounds that make up a graphical interface7 are 
built by a tool called the Icon Editor, depicted in Figure 5. We use the term "icon" in a very broad 
sense. All elementary objects that may appear in an interface are collectively called icons and 
the purpose of a session with the Icon Editor is to implement or refine these icons. Once entered 
in the knowledge base by the Icon Editor, an icon is ready to be instantiated in interfaces. Each 
icon has three kinds of characteristics: 

• structure, what parts an icon has and how they are connected; 

• appearance, what one sees when an icon is presented; 

• behavior, how an icon acts to show state or to respond to user actions. 

An icon's structure is defined to be either a primitive icon or, recursively, an assembly of icons. 
Primitive icons are those that are predefined in the knowledge base. They range from the typical 
set of graphical primitives (such as line, box, ellipse, and character string) to an ad hoc collection 
of more sophisticated icons (such as dial , graph, column, help button, camera, window, and 
constraint) whose potential usefulness is anticipated. Primitives can be combined into 
hierarchical assemblies, theoretically forming arbitrarily sophisticated icons. Because graphical 
interfaces are highly specialized, we expect that the most frequently used icons (including both 
visual and behavoral characteristics) will not be stock primitives, but custom-built. One feature 
that helps with customization is recursion: every assemblage of icons is usable as a component 
in more complex icons. In addition, we expect custom libraries of icons to continue to grow and 
be reused across interface applications. 

Components of icons do not necessarily correspond to part-whole relationships found among 
application objects. For example, the interface entity for a resistor may contain a list of colors 
(that may indicate current through the resistor) while the application entity for a resistor may not 
have color at all.8 The appearance of an icon is separated into abstract and concrete aspects. 
Abstract aspects specify relationships between the components of an icon; for example, that the 
title of a window lies along the top edge, is centered, uses 12-point boldface Helvetica, and sits in 
a rectangle whose height is 1/20th of the height of the view. These relationships hold regardless 
of the medium through which an icon is displayed. Concrete aspects specify details that pertain 

7We currently make use of the Symbolics window and presentation systems to provide some low level capabilities. A 
portion of these facilities are also represented within the HITS knowledge base. Implementation of windows and menus 
are done using the normal Symbolics tools. 

8The ability to provide interface manifestations of important conceptual properties can be quite powerful. In the 
Steamer system [14] for example, one of the most salient aspects of the interface was the ability to depict the causal 
topology of a propulsion plant by showing flow rates in the pipes that connected components . Nowhere in the underlying 
high fidelity simulation were these flows directly represented. Still they could be readily computed and used to augment 
the visual display in ways that were very revealing to users . 



HITS Introduction 

~ ~- -- - ~---- ----------
Icon Editor ,..........,,,..,..,,...~ II[!J!) 

-~- -~----------- ----~-

P-1~/P~"'-;Ao;r.aar-- k!~~;9~! PG:Citlv n lut 
Draw Prot.ot.ypc Tri1ngl c Spline Image 
Probe Inttnct. Circle Ticklinu Animation 
Set. Configure Arc: Other 

Reorder 

~•nu Test 
Color 
Tap 
1'11 f C 

ir.~·:""~:"---r;;;;:;r~~. rr.~;'i;>~~~-,;.1c1 t.c.""co"-n "§~;;;;;o~;-----;2""~;-n,•- ~~~;;::~:'""!!""; .. ~,;""o,'.,,-
Hig~light. Mit e Default. Ou cribc Shape Size T -Sao..;arc 
All U • t. In t pcct. Rot.aw 

Name Reflect. 

TIC J::-CQLOI <Col"' pou <LIM£· 2, COLOR>,, . > T C I'! 
OUTl l ME · COLDI <Col'lpou <RE CHUt'LE-' OUiliNE-COLOR> > T C 11 
IKOlC IIT OI-CDlDI <CoP'Ipou <ln41utor COlOR» T C 1"1 

Figure 5: Icon Editor 

16 

to a particular medium, for example, the color of the line segments that make up the resistor and 
the list of coordinate points that comprise the segments. While abstract aspects are always 
present in the knowledge base, concrete aspects may be known only to a process that renders 
icons on a particular device. 

An icon's behavior includes changing its visibility , color, texture , intensity, 3-D position , sound, or 
shape. One very simple behavior makes an icon visible whenever a boolean is true and invisible 
when it is false. Another behavior makes an icon's size directly proportional to the value of a 
single variable. Changes may be singu lar or may cycle through a fixed sequence, as in multiple­
frame or color-table animation. A more compl icated behavior cycles segments of an icon through 
colors, as in a movie marquee, as long as a function of various states and events returns a value 
within a certain range. An icon's behavior is simply chosen from a menu. Behavior can be 
associated with any part of an icon. A user of the Icon Editor can compose new behaviors readily 
from a stock of primit ives . Should one wish novel behavior that can't be composed from the 
primitives provided, such as having an icon wrap itself around a sphere, or blow up, or wave like 
a flag , there is no way to obtain it short of writing code. While the general problem of describing 
arbitrary behavior remains unsolved, the Icon Editor provides a powerful set of stock behaviors 
and ways of composing them. Once a behavior has been described, it is stored in the behavior 
slot of an interface entity. 

Building Graphical Interfaces: Graphics Editor 
An entire interface's appearance is built by a tool called the Graphics Editor [8] . One uses it to 
instantiate elementary objects or icons, place them in scenes, and arrange their activity. Most of 
its capabilities are similar to those of conventional object-oriented graphics editors, the details of 
which should be familiar to the reader. Its main difference is that its output is a single interface 
entity that is entered into the knowledge base . That ent ity and its components are thus available 



HITS Introduction 17 

for inspection and reasoning when an application runs under that interface. 

The coupling of an application and a graphical interface must be highly flexible . Users are never 
satisfied with a fixed number of views of a sophisticated application. The most important function 
of the Graphics Editor is to couple an application and an interface, a process called tapping. A 
tap is an object that associates an icon with behavioral functions. Icons may evaluate their 
behavioral function whenever a variable is changed, or at regular intervals, or by a user's 
command, or according to a complicated function of events and states. Maps are specified in the 
same way as behaviors. A number of standard maps are provided; a user selects one or 
composes simpler ones into a more complex map and tailors its parameters to fit a specific 
application. This approach minimizes the burden on application entities; each entity need only 
respond to a 'probe' message. Interface entities are responsible for probing specific application 
entities at suitable times. This tends to concentrate the details of coordinating an interface in the 
interface, rather than spreading them throughout the application. Such a balance seems well 
suited to animated interfaces, where sometimes a riot of events in the application signifies only 
that an application's variables are sitting within nominal ranges. Also, it makes it easier to attach 
different interface perspectives to a single application, since an application is unaffected by the 
coming and going of entities in the interface. 

Graphics Editor ~,,_.,<ICe Lm>or .. _, ll[jJ!J 
------~---- - --- -~-----

Vi ew: lu t e Cop l t.r* 
Model: Copier node;l (st o p ped] 

Sub Syste.oq All 

Basic C opier Interface 
De sign VI e w 
Du1 gn Probe I a pt 
Styl e Litt. Draw 
Auist. Reorder Hardco py 
Trace 

Mark Edi t Ma r ked l<:ons 

Total Number 
Number Finished 

I I I I 
m (g]@J 

@.li§] [§] I 
[Z]fm[g] Exposure 

L:J[QJ~ @ 
~ 1tl'l t ... rll 

R1ghhght. 
Clear 
Hark Start 
Al l 
Tapped 
Unt.ipped 
Type 
find 
Mi' c 

Interrupt 

I 
Stop 

Delete 
Undele u 
Probe 
De faul t. 
Li st 
Ora"' 

Des cr ibe 
lntpect. 

Di•l 
Column 
Tank 

Oigi ~ l Bar 
Force Sal"' 

~----------------lline Bar 
Spline 
Polygon Signa l 

Tu:t 
Banner 

Grid htcntni on, 

Figure 6: Graphics Editor 

Building Graphical Interfaces: Pogo 

Move 
Copy 

Edit 
Shape 

Rot.ate 
Reflect. 

Model 
Interact. llCI( 

Init.i alize Rate 
Config~.Jrt 

Gr id 
I ap Draw 
Name 
Color Size 
Label 
Picture ·~ 
Mite L.-1a9onal 

T - SQuare 
ln~r vit'W 

We use a tool called Pogo9 to create an architecture for 3-D graphical interaction by designing a 

9At present Pogo is less completely integrated into HITS than the other tools discussed in th is paper. Pogo represents 
one direction we expect for future graph ics systems to take and for full utilization will require more sophisticated graphics 
hardware than is available on our present research platform. The Icon Editor and Graphics Editor exploit traditional bitblt 
types of graphics. Although Pogo is organized around the notion of disp lay drivers and can be used on conventional 
hardware, it is best used with display-list graphic hardware. 



HITS Introduction 18 

hierarchical set of classes, attributes, and methods. Pogo has four jobs, one abstract, one 
declarative, one concrete, and one procedural. Its abstract job is to divide graphics into a 
hierarchy of concepts that can represent displayable objects for any application. Its declarative 
job is to represent graphical relationships and operations as rules in a knowledge base. Its 
concrete job is to translate graphical abstractions into tangible objects, frames of reference, and 
resolutions peculiar to various media. Its procedural job is to program the issuing of commands 
that render graphical abstractions onto various devices. 

For every graphical component of an interface constructed with HITS, there is an object in the 
HITS knowledge base. Every graphical view has a root component that corresponds to the entire 
view, as well as a set of other components that correspond to pieces of the view. A view can be 
presented on any dev~e by simply handing its root to a driver for that device. Each device driver 
is responsible for making optimizations that allow views to be presented efficiently. Device 
drivers themselves are objects in the knowledge base. 1° For each medium, one builds device 
drivers that interpret abstract entities. That way, only device drivers contain hardware-dependent 
library calls, but there is a performance penalty. 

One uses Pogo to enter declarative specifications of graphical primitives into a knowledge base. 
Graphical abstractions should cover a range of complexity, from bottom-level primitives, such as 
line, to intermediate-level primitives, such as window, to top-level primitives, whose names are 
always controversial. It is in the attributes and methods of top-level abstractions that one settles 
fundamental issues such as 20 vs. 30, real-time vs. non-real-time, device independence, and 
coercion. Prior systems that were based on procedural primitives (drawing commands) and 
concrete primitives (pixels) were judged too complicated, too hardware-dependent, and too 
application-specific. Primitives should cover a spectrum of specialization. General-purpose 
primitives such as polygons and strings of text are needed by all applications. Special-purpose 
primitives are needed both to give initial applications a head-start and to provide detailed 
examples for other applications to mimic. 

The greatest benefit of representing all graphical information in a knowledge base is that all parts 
of the system are equally well informed about what the user can see. The application itself, the 
advisory system, the display device, and the interface all share the same entity. They do not 
have to build and maintain their own model of what is on the screen. Changes brought by one 
part are known to all other parts. 

The greatest disadvantage of having all graphical information in the knowledge base is that a lot 
of sophisticated engineering has to be done to balance the competing needs for rapid interaction 
and semantically meaningful feedback. For meaningful feedback, every interaction should reach 
from 1/0 devices all the way to the knowledge base. For high performance, every trivial 
interaction should be handled entirely within 1/0 devices. 

BUILDING GESTURAL INTERFACES 

When an interface allows freehand input, it presents a recognition problem analogous to that of 
continuous speech. The user's hands are in almost continuous motion and what the system 
wants to receive is not a fast stream of coordinates but a slow trickle of very high-level interface 
entities. If the user sketches a graphical symbol that signifies a resistor, the device should 
encode the stream of gestures into the interface entity that represents a graphic for a resistor, 
having the position, size, and orientation that was sketched. This has motivated a tool called the 
Gesture Editor that trains a neural net to recognize users' sketches and gestures. After a neural 
net [12) has learned to recognize them its weights are entered into the knowledge base, to be 
retrieved whenever users want to draw icons in that vocabulary. 

10Workstations today are in an awkward phase after the time when information was mostly textual and before the time 
when fast implementations of a flexible, well-thought-out, widely accepted, graphical standard are commonplace. We 
would like to use a graphical standard but the only routines that are acceptably fast come from proprietary libraries. 
Earlier work in multimedia led to the conclusion that interfaces need to be built out of abstract entities whose semantics 
are independent of media. 



HITS Introduction 19 

Pooo n.c nr escnl a tlo n S ystem 

POGO Cl11ss Lot t i c e 

0 0 {::, / TEXT TEXT C 

< @CIRCLE < SI IAPE @R(CTANOLE . 

OFORM 

Cl CAMEnA 

l~D WINDOW - !0 IJitli'L A Y 

Figure 7: Pogo 

Building Gestural interfaces: Interactive Worksurface 
The Interactive Worksurface is a system that can recognize and interpret notations and sketches 
that are drawn freehand. It consists of a large, horizontal, 72 bpi plasma panel coupled with a 
1000 bpi digitizer and a 16 bpi touch sensor. As an output device, it functions as a raster device 
compatible with SunViews, X11, and the Symbolics window system. As an input device, the 
digitizing stylus sends 200 coordinate pairs per second over a VME-bus to software on a host 
computer that converts them to strokes, thence to a normalized bitmap, which is input to a neural 
net. The net classifies the pattern and posts an object representing the sketch on the blackboard 
of the HITS run-time system. Touch inputs are posted directly as coordinate pairs. 

Building Gesture-Based Interfaces: Gesture Editor 
The Gesture Editor is a tool for collecting, editing, labeling, and transforming training samples for 
neural networks. It was built to ease the task of creating and handling the large training sets 
required for building effective networks. Originally designed to collect and edit hand notation 
gestures for a stylus-based digitizer such as that employed in the Interactive Worksurface, it has 
been expanded to process scanned image samples and to generate artificial patterns as well. 
Samples are presented via a film-strip metaphor. The editor contains a neural net simulator and 
can output pattern files for use by the Rumelhart-McCielland simulator [12]. Network specification 
is simpler and learning is faster than in the Rumelhart-McCielland simulator. 

Numerous facilities are supported by the Gesture Editor. These include facilities for switching 
between different coding schemes for inputs (e. g., size of array, dots vs. strokes) and outputs (e. 
g. , conversions from feature codes to category codes), for capturing stroke images from 
commonly available digitizers, for using a network to label images as they are captured, and for 
mapping schemes to assign image labels to specific neural network output patterns. In addition, 
the Gesture Editor provides a facility for random variation of images that can be used when 



HITS Introduction 20 

training a network, so that on each pass through an image set a slightly different image is 
produced to feed to the network. Several sources of random variation are available, including 
rotation, aspect ratio stretch, stroke stretching and shrinking, and bitmap noise (pixel lossage and 
trashing) . This facility is similar in purpose to the training-with-noise facility of the Rumelhart­
McCielland simulator, but is much more sophisticated. It can be used both with the internal 
neural network simulator and with the pattern file generator. The Gesture Editor, like all HITS 
tools, can also be used interactively on the IWS. 

--- ----~-------- -~--~~-~~-- -- -~~~--~~~~~~~--

Gest;ure Edit;or Human lnt.erf<>c"' L"bor"tory III!I!J 
---------------~-------------~----------------------------------------------- -

__ZJ jt) 

----

Figure 8: Gesture Editor 

BUILDING NATURAL LANGUAGE INTERFACES 

Natural language understanding and generation by computer requires complex programs. For a 
computer to use language as humans do requires a large body of knowledge about the world in 
general, knowledge about particular domains, knowledge about general discourse conventions 
and the particular discourse at hand, as well as knowledge about the sentence structure and 
words of a language and their mappings to representations in some internal store such as a 
knowledge base. The computational state of the art in natural language processing falls far short 
of general human discourse, but nevertheless limited forms of natural language can be usefully 
employed in the interfaces to restricted application domains. 

The main rationale for use of natural language in an interface is that natural language provides 
the best means available for users to refer to sets of objects whose makeup is not fixed and finite, 
whose unique references are ~ypically not known (or remembered) by a user, or whose reference 
by other modalities might be awkward and/or time consuming. For example, consider a computer 
model of something like a copier shown schematically in Figure 9. 

As such a complex model evolves over time, typically involving many people, the need grows for 
some commonly understood language by which users can refer to concepts in the knowledge 



HITS Introduction 

ICopierSt~rtint erf ~c e Obj ect l 
I ' 

l cooie~Expo~ur e int erf~ c eObj ect l 
I 

IKey9Inter f~ceObj e ct l 

I'' \ 
I \ \ 

I CopierSt~r tMode lFunct i on~ lityl 
\ 

I Cop i e r Expo~ureMode 1 F unc tion~1ityl 
I 

I K ey9Mode 1 F u n c ti on ~ 1 it yl 

Figure 9: A complex reference domain 

21 

base. There seems to be nothing as suitable as a natural language like English in such cases. 
Unique names given to entities in a knowledge base are likely to be unpredictable and hard to 
remember. In knowledge editing and retrieval applications, the usefulness of graphical 
navigational techniques goes down in proportion to the size and complexity of the knowledge 
base. In many other kinds of applications, users may need to refer to knowledge concepts 
without being conscious of it. Such is the case in the copier interface design scenario described 
in the outset of this report , where a user taps an icon to the concept in a copier simulation model 
denoted by the English phrase "the start button". Phrases that would have worked equally well 
include "a button to start the machine", "the start function", "starting the copier", etc. 

A complete natural language system includes the abil ity both to understand input from the user 
and to generate appropriate responses in natural languages. Because almost all of our effort up 
to this point has been devoted to the understanding side of such a system, we will focus our 
discussion here on this side of the problem. 

Figure 10 shows a schematic diagram of a natural language understanding system. The ovals 
represent the necessary knowledge sources. The rectangles represent the processes that use 
the knowledge. The domain-independent HITS runtime system supplies all the rectangles in the 
figure. Thus, HITS supplies the standard operational components of an natural language 
understanding system. e.g. , a parser, a semantic interpreter, an anaphora resolver, and a 
pragmatic processor. 

Unfortunately, HITS cannot go quite so far in specify ing all the necessary knowledge in a domain­
independent way. It can go a long way toward providing the top oval, since syntactic knowledge 
varies relatively little as a function of the domain that is being described. The bottom oval must, 
of course , be redone for each application, but we make the assumption that the natural language 
system will use the same domain knowledge base that the application program itself uses. The 
middle oval must be created especially for each new natural language interface. To do this, HITS 
provides a tool , Luke, that will Ge described be low. 



HITS Introduction 

Interface Construction 
Time 

Discourse Tools 

Grammar Tools 

Lexical 
Acquisition 
Tools 

Knowledge 
Base 
Editing 
Tools 

Knowledge Interface Run 
Time 

NL 
Understanding 
System 

Application 
System 

Figure 10: A Natural Language Understanding System 

Building Natural Language Interfaces: Lucy 

22 

Lucy is the English understanding component of HITS. It is comprised of a set of tools for 
incorporating partial or full use of natural language into an interface. Lucy is integrated with other 
HITS tools in such a way that the use of natural language can be combined with other interface 
modalities such as graphics, sketching, pointing, menus, and command languages in the 
interface. Designers can then mix and match according to the needs of each particular interface 
being built. 

The major components of Lucy are: 

• a discourse and dialogue management module 

• a semantic mapping module 

• morphological and syntax modules 

• an English grammar and core lexicon 

The HITS run-time system, described later, integrates the processes involving these knowledge 
sources, as well as others in the interface, through a central blackboard. The blackboard allows 
for flexible interleaving of knowledge sources during analysis. This design for system architecture 
has been the result of several years of research on natural language understanding systems in 
which other approaches to the control problem have been tried and rejected . 

As we saw in Figure 10, three kinds of knowledge are necessary to support a natural language 
understanding system. We will briefly discuss the support HITS provides for the acquisition of 
each of them. 

Linguistic knowledge (the top oval) is mostly portable from one domain to another. Although the 
words we use vary as a function of what we are talking about, the syntactic rules that govern the 
use of those words vary little. Thus, HITS provides a syntactic grammar for each language that it 



HITS Introduction 23 

covers. But HITS also provides a set of grammar development tools. Interface designers (and 
perhaps even users) will probably want to do some extensions and/or customization of the 
grammar and discourse components as each new Lucy-based interface comes into being. 
Interface designers will certainly need to do testing. And further, such tools would of course be 
useful should HITS users want to write grammars for languages other than English. The major 
tool for grammar development is Lucy Lab, shown in Figure 11 . It is an interactive environment 
used to examine the state of an analysis by inspecting and stepping through a graphical display 
of the underlying rule firings in a chart/blackboard. Off-line testing of a corpus of input strings is 
available through a batch test facility. 

LUCY-Lab Hu,_., tnterl<>ee ~ .. _, mr!I!] 
-- -- --- -- - - -- -- --------

_ ;_,;Pa:.;_rs"-"e-"S"'-'pa:.::,c::._e -----=c-=--=-=-:c::=-=-::=.,...------- Current t i "e: 12,.911'88 19: 39: 51 
THE START BUTTON 

0 0 0 0 

H£ pact butter 
~Has nn - --= 

,. ~how ~ Ar-gs <•root.• Hi:. f:it•rt button ~Vtl X-t.U{It. NIL > 
)It Sw• P Inspectors 
,. Ot- •w Tree: orootl THE Start button SYNTAX-EDGE NIL> 
; .. 
! 
! 
~ 

Clear 
Toggle display 

Conflguation 
Set Parametera 

Draw Tree Show ILF arga Swap Inspectors 
Get ILF Get KBLF Show graph 

lnsoector 1 

Sample-S 
Batch test 

Expand Obj e ct 
Gat Rule 

~-- -----I~•<S~ta_rt_bu_ct...::on::::;S,.,YN=T.=AX~-E=DG=E-NI~L>i 

~~ 
i~•<S~ta-rt~S=YN=TAX~':!l~DG~';t~NIL~)j f~<ou-t-ton_:::..O~R~D-~EDG~E N- IL- ) I 

I T 
1 <Start ..oRO-EDGE NIL) 

! I 
J Start MORPHOLOG 

lL ·--

ILF i£: 
(I<'ROOT'-1? 

<button MORPHOLOGY-EDGE 

I I 
« j =:tJ 

( I <DEF-ART-<J) ((I <CPO? (I<SG ) I <START-<1?)) (I <SG? 1 ( 8 
UTTON-<1?)))) 

L•ft: Next screenrul; Middle: last acreenful (100S); Right: Provious scroenful. 
Press IWMI hold left mouse button to scroll upwards repeatedilf. Right: downwards. 

u~er Input 

Figure 11: Lucy Lab Screen 

Discourse Lab (Figure 12} is an analogous set of interactive debugging and development tools for 
inspecting the state and processes of the discourse component. An example where Discourse 
Lab would be used is in the development of a interface component to understand a pronoun such 
as "it". As pronouns come into the dialogue, the discourse history needs to be consulted to 
assign a meaning to the pronoun. Lucy makes the best guess consistent with heuristics and the 
known constraints. Sometimes, however, insufficient information is available for Lucy to 
determine the user's meaning. In such cases the user is engaged in a clarification dialogue that 
in turn is added to the history of the interaction. 

Domain knowledge (the bottom oval) must mostly be redone for each new domain (although 
there may even be portable parts of this [9]). The premise that underlies the HITS approach to 
natural language understanding is that the natural language system will not have its own domain 
knowledge. Instead it will use.the domain knowledge that the application program exploits. Thus 
the creation of the knowledge in this bottom oval is not specifically an interface creation problem. 
It can be done using the standard knowledge base tools upon which HITS is built. 



HITS Introduction 

Anaphora Options r·" h .,. 

Typ~: .. orr 
Person: h Off 
Nut'lbcr: 0. Off 
Gender: 0.. Off 
D1•Jo1nt Rer: On Off 
Clobal Foe~ : k Orf 
Local Focu•: .. Off 
Trace .naphora resolution?: 
Set effort level 1 to 4: 3 

Done Abort 

#( Oodgo-8> 
#<Oodgo-7> #(lntorpg-1) 

#(Oodgo-7> 
#<Oodgo-6> #(lntorp7-1 > 

# (Oodgo-6> 
#(Dodge-S> #(lntorp5-1> 

Yu •• 

Figure 12: Discourse Lab Screen 

KB Editor 

fnthy 5.0 1 .,...,Proposit ion4 
Entity 4.01 I ... OISF\.AY 

fntlty3.01 ~~ 
Endty 2.~ ,,._HKl 
fnthy 1..D3 1'-l.up.,.,oy 

DIALOGUE SO FAR 

•, y~ .,,.. now u.ldng _ 
'r•ec:' DISPLAY A DOQ 
Yow Input .,...., undento-

Lucy 

Figure 13: A Layered Tool for Knowledge Base Construction 

24 



HITS Introduction 25 

Building Natural Language Interfaces: Luke 
Mapping knowledge (the third oval) is the main bottleneck in building a natural language interface 
for a new application program. HITS provides a tool called Luke to help to overcome this 
problem. Luke facilitates the creation of the semantic mapping rules that are needed by a natural 
language system when it maps from words in a language to/from concepts in a knowledge base. 
The key idea behind the design of Luke is that, since these mappings are conceptually linked to 
the knowledge base objects to which they refer, the right time to build the mappings is roughly the 
same time that the knowledge base objects themselves are being created. Thus, Luke is 
implemented as a set of hooks into the base knowledge base editor on which HITS is built. The 
architecture of Luke is shown in Figure 13. Whenever a knowledge base object is created, the 
Luke command Associate Word can be invoked to associate one or more words with the new 
object. These words can be defined to map to the object itself or to some path that goes through 
the knowledge base and that refers to the new object. Luke incorporates a general model of 
lexical semantics so that it can, in many cases, guess the correct form for the semantic mapping 
rules that define a new word. It then displays its guess to the user, who can easily edit the new 
rules before they are actually stored. 

Luke is a colloquial name for an extension to the HITS Knowledge Editor (HKE) that enables 
editing and maintaining lexical knowledge. Lexicon-building tools are crucial for making natural 
language processing an integral part of the interface designer's toolkit ; yet, such interface 
designers cannot be expected to be experts in natural language processing. Luke attempts to 
bridge this gap by representing and acquiring lexical knowledge in the same manner as any other 
knowledge representation task. Thus any user of HKE has almost all the requisite skills to build 
lexicons for the run-time Lucy natural language system. 

Luke provides a set of special display and editing methods for units representing "open class" 
English words: those that can gain new entries over the course of everyday usage, such as 
nouns, verbs, and adjectives. The "closed class" words such as articles and pronouns are 
automatically entered in the lexicon from the start. HKE users define new words by invoking one 
of a small number of commands. For example, "Associate Noun" defines a particular noun to 
semantically denote a set of units in the knowledge base, as well as defining that noun's syntactic 
properties, such as whether it has mass or count properties, its pluralization, etc. 

As a result of one of these special commands, several new units are created representing 
orthographic, syntactic, and semantic aspects of the word. These can be inspected in the same 
way as any other unit, although they have special display methods and so may appear slightly 
different than ordinary units. These units are processed by a special "lexicon compiler", that 
produces a compact indexed runt ime structure for the Lucy parser. As soon as acquisition of 
lexical units is completed, Luke compi les the new word sense and makes it available in the 
natural language lexicon. 

Unfortunately, word definitions are as likely to need modification over time as programs. The 
definitions of words can be debugged in HKE since the Lucy parser is an integral part of the HKE 
interface. After defining a new word , it instantly becomes a legal word to use in the HKE interface 
itself. Thus in one command, the user can define the noun "bear" to mean some instance of the 
class "#%Bears" and then in the next command make use of it by issuing the command: 

:Inspect Unit "a brown bear in Wisconsin" 

instead of 

:Inspect Unit # %BrownBear76235 

and expect the noun phrase to be parsed and analyzed correctly (assuming, of course, that 
"Wisconsin" and "brown" and "in" had been previously defined as words in a similar manner.) In 
this way Luke brings the same immediacy to lexical acquisition that has proven itself in the world 
of exploratory programming. • 



HITS Introduction 26 

BUILDING COLLABORATIVE INTERFACES 
Our approach to the acquisition of knowledge to support collaboration and advice follows the 
same two-step approach described above . First , it should be possible to derive some of it from a 
declarative representation of the application. Ideally, this representation is the definition of the 
application, and not a post-hoc representational depiction of the application developed 
independently of the application. There are several kinds of knowledge that could be constructed 
in this way: 

• Static application representations. Any implementation of an application contains 
definitions of the components of the application: the numbers and kinds of inputs and 
outputs each of these procedures has, constraints on the data that are accepted and 
produced by these procedures, and so on. In present-day applications, this 
information is all buried inside the application in unanalyzable procedural code. If 
these components were implemented in an inspectable, declarative form, it would be 
possible to derive advisory knowledge structures characterizing these aspects of the 
application's procedures (or, better still, to use these knowledge structures as the 
basis of advisory reasoning) . This is rather low-level, abstract knowledge about the 
application, but it is important information nevertheless. 

• Knowledge about basic Interface capabilities from advisory-laden 
components. A powerful interface development environment should make building 
blocks available to interface designers that can be combined to yield working 
interfaces. We envision these building blocks as supporting basic interface 
operations; for object-oriented graphical interfaces, these operations would include 
the creation and deletion of screen icons, and techniques for drawing links between 
these icons. In addition, these building blocks would contain knowledge structures 
capable of informing an advisor about how the operations can be applied correctly 
(and incorrectly) in an application. For instance, a building block for drawing links 
between screen objects should contain the interface-level code that portrays the 
creation and deletion of these links on the graphics display, and the application-level 
code that implements the functional interconnection between the application 
elements connected by the link. This component should also contain knowledge 
relevant to the linking of objects: what users must do to create and delete links, what 
effects a link has on the application program, and common misconceptions about the 
manipulation of links (i.e., invalid ways of drawing links, and invalid models of how 
links support information transfer between application elements) . The point of this 
approach is to define this knowledge once , and to have it be inherited by any 
application advisor that utilizes this link-drawing building block. 

• Guided acquisition of advisory knowledge. A final important classification of 
advisory knowledge is the knowledge that is highly application-specific . As noted 
above, a representation of the number of inputs to a statistical procedure could be 
derived from a declarative representation of that procedure, but that same 
representation could not support the derivation of knowledge about what role that 
procedure plays in the application, why one would want to compute such a statistic, 
or what one would do with one if one existed. Because of its application specificity, it 
is also unlikely that this knowledge could be inherited from some other application, in 
the way that knowledge about linking might be inherited from an intelligent interface 
toolkit. The only way to get this knowledge into the system is to encode it, through 
standard knowledge acquisition techniques. 

Two aspects of HITS make the task of representation of knowledge to support collaboration and 
advising easier than it might _otherwise be . The first is a rich knowledge base about interface 
topics. This provides a strong foundat ion for representing application-specific knowledge. This is 
operationally no different from the normal knowledge acquisition procedures ; the power comes 
from the accumulation and richness of the knowledge available, and the shorter conceptual 
distance between the concept to be represented and those already present in the knowledge 



HITS Introduction 27 

base. The second aspect is a set of techniques for guiding the knowledge acquisition process. 
Just as Luke prompts the knowledge enterer for semantic mapping rules corresponding to 
concepts being entered into the HITS lexicon, a similar set of techniques can prompt the enterer 
for the advisory knowledge discussed earlier: the common models and misconceptions of these 
concepts. Together, these features serve to structure , and thereby ease, the knowledge 
representation task. 

As was the case with our approach to natural language understanding, our approach to 
collaboration and advising draws on several types of knowledge. THEM IS (6] , (1 0], which 
handles user queries and supplies advisory strategies to their solution, is composed of a 
procedural component and a set of knowledge bases to which the component refers . Some of 
the knowledge bases contain domain-independent knowledge; this knowledge is also provided as 
part of HITS. As an example, many of the advisory strategies that are exploited by THEMIS are 
very general (e.g., the strategy for describing a plan is very general, even though the content of a 
particular plan is, of course, tied to a problem domain.) Some of the required knowledge is 
necessarily domain-dependent. What HITS can provide for these domain-specific knowledge 
bases is a set of tools to aid in their construction. 

Building Collaborative Interfaces: Conversation Tool 
A number of recent empirical studies have pointed out problems inherent in both human-human 
and human-computer communication [7] [15). Consequently, exploring techniques for dealing 
with communication problems has become a focus of our research in advising. We search for 
ways advice seekers can take a more active role in the advisory interaction, allowing them to 
redirect the course of the interchange, to follow up on parts of it, or to suspend the interaction and 
resume it at a later time. In short, we seek to move toward a collaborative interaction, in which 
the advisory system and the user share the ability to direct the interaction [16). The HITS 
Conversation Tool is an experimental interface built on this foundation that supports collaboration 
design by making it easy for designers to obtain relevant information about existing collaborations 
and allowing them to pursue alternative conversational avenues beginning from any piece of 
advice . 

There are several ways for collaboration designers to initiate an advisory interaction. One is by 
indicating the knowledge structure they are interested in they can set the advisory focus to 
relevant strategies. The collaboration designer then can seek advice by pointing at the focus unit 
and the relevant strategies associated with it. In addition, two important types of advice-seeking, 
obtaining descriptions and obtaining instructions, can also be initiated. 

When an advisory interaction completes, the structure of the interchange is shown on the display. 
Collaboration designers can follow up on any piece of advice by clicking on it. This brings up a 
menu of further advice available from that point. The possibilities for further advice include 
getting an elaboration of the instruction, receiving an explanation of any of the concepts referred 
to, and being shown the actual knowledge base objects that were referred to. 

Collaboration designers also may redirect the interaction dynamically. When advice is being 
given, they may indicate trouble and the system responds by asking them to describe which of its 
communications caused the trouble and then to choose from the further advice that is available. 
After this clarification subdialogue has been completed, the collaboration designer may resume 
the interrupted interaction. 

AN EXAMPLE APPLICATION: THE HITS KNOWLEDGE EDITOR 

The HITS Knowledge Editor (HKE) is a example application of HITS in the domain of CYC 
knowledge base editing . Our.purpose in building HKE is twofold. First, HKE provides a working 
example of the use of HITS. Second, HKE is a research vehicle for understanding the demands 
that the knowledge editing task places on interfaces. As a knowledge editor, HKE supports 
browsing and editing of the CYC knowledge base. This is a substantial application because : 

• Complexity of the Knowledge Base The CYC knowledge base is large 



HITS Introduction 

(approximately 30000 units) , complex (20 inference methods, thousands of classes 
of objects), and users need effective methods of visualizing the knowledge base's 
structure, contents , and inference processes without being overwhelmed with 
information. CYC knowledge enterers must not only enter information but must also 
ensure that the knowledge is coordinated with work being done simultaneously by 
many other knowledge enterers. 

• Complexity of Knowledge Editing Knowledge editing is not a single task. It 
consists of the multiple complex tasks that are involved in deciding how to 
conceptualize and represent the important aspects of domain knowledge for various 
types of applications. The representational difficulty varies with the type of domain 
being represented and the amount of epistemologically primitive representations 
required to tie the domain into the CYC knowledge base. This can vary from having 
to make deep epistemological decisions to being able to exploit the copying and 
editing of already existing closely related representations. 

spec s : 
a llin•tances: 
c a nH .ave S 1 ots : 
r'IUtuall y Di a j otntloli t h: 

a 11I ns t ance0f : 
i n s t ance:Of: 
r'lyCrtator : 
l"' yCreattonTi"'e : 
a llCe nl • •. . : 
s i ngu lar : 
pl ur•l : 
part T ype: Of: 
un i t T oSe Check e dBy: 
a ll Pa rtTypes : 
de f a u l t Display Type : 
uni tD1 sp 1a yed8y : 

<lt2L 'l•pStr~n11> 
( I ?. An 1 f"'al Pro t ect 1 vePart ) 
< lf%Coll•cl'l.ot~> 

<lf'ZT .. iltfl> 
<lf2Slot> 
<IIZColl•ction> 

( I ?.Co llect i o n 17.I n t ang t b le: I ?.R e pruent e dlhing 1 ?. 
( 17.0 b j e ctlype) 
( 1 7.Guha ) 
( "l /2 71"88 1 7 : 21 :29 " ) 
( 1 7.Re pre s entedT hing I?.Hai r -Maf"'f"'al 17.Thi n g 1 7.I ndi 

( "l'lar"lf'l a l " ) ~ -~~~~~~~~~~~~~~ ( "l1a!'\n a ls " ) fp 
( 11 7.!'1 a!'lr~a l) 
( 11 7.Perfor"'Con•i •te ncyChe ck i n gGl S-4821) 
( I ?.Surfac e On T ang1 b 1 e Ob j e c t ) 
( J(7,.HK£Coll • c t ion - Unit0 isplay) 
( t <UNI T- BASE HKECo ll e ction- Uni t Di splayS -11a t a dor 

KESlotVal ue Di s pl a y 
HKEDisp l e yObj e c KEVi euDi s p l a y 1

~~~~~~=~!~7;:~~~nce 

KEDesktopOi s pl a y

KEUni tDhp lao,.._~'->

CJ
Des k t oplconC l ass e s

! &.lr- obl ew sk:i I ..
Steve nsF i ra tS tack

Figure 14: HKE Screen

HKE Is Implemented With HITS

28

As an example HITS application, HKE makes use of most of the components of HITS in its
implementation. For instance , HKE uses the HITS blackboard (discussed later) to handle user
input and exploits a representation of itself and the task of knowledge editing to collaborate with
users. When a user types a command or clicks the mouse the knowledge base is consulted
about how to handle the command or mouse gesture, and appropriate routines to respond to the
user action are invoked.

HKE allows graphical views to be created and attached to portions of the knowledge base in
order to browse or document its structure. For instance, suppose one were creating a port ion of
the knowledge base concerning the distribution, schedu ling, and maintenance a set of computer
workstations. Although the requisite units for the workstations need to be created, the enterer of
this knowledge has the tools available to make a graphical view of the building floorplan , with

HITS Introduction 29

icons for various workstation types, etc. Subsequently, other knowledge enterers may choose to
browse that part of the knowledge base via this graphical representation rather than the default
tabular method.

HKE integrates natural language processing in its interface. At any point in the HKE command
set where a unit's name may be typed , HKE also allows the Lucy natural language parser to
intervene and parse the user input as a noun phrase. Conversely, the user may associate nouns,
verbs, adjectives, prepositions, etc, with units and relations in the knowledge base as a method of
semantically defining English words for later use. Thus, in exactly the same manner as with the
previous graphical methods of documenting the workstation knowledge base, one may document
or browse that section of the knowledge base by describing in English the units desired.

HKE uses a flexible advice angel mechanism to detect possible user errors and report them. This
is done in conjunction with a personal agenda for each user. When one of HKE's angels detects
a possible task for the user and presents it, the user has the option of ignoring it, dealing with it
immediately, or scheduling it on his or her agenda for later consideration. The personal agenda
mechanism helps avoid intrusive error messages while retaining the advantages of having an
automated assistant to help.

HKE Is Represented In eve
As an example HITS application, major portions of HKE itself have been represented in CYC.
For example, most of the HKE state information is stored in the knowledge base. This permits a
powerful computationally reflective ability for HKE and other HITS tools. In addition, information
such as the user's current tasks, personal agenda, etc., are stored in the knowledge base and
remembered by HKE from one session to the next, even if the user switches machines or
reboots .

One major advantage of representing this knowledge editor in the representation language it edits
is that HKE can be customized by the user in exactly the same way as is involved in editing any
other knowledge. For instance , a user can customize the display of the standard inspector menu
icons by editing the units that represent those icons. This provides an interesting and useful
interface prototyping environment, where effective ways to visualize information can be
developed concurrently with the information structures themselves. Of course , the abilities of
users to have access to this kind of facility can be modified and specialized variants of the HKE
can be implemented as part of a tool chain of HKE editors.

THE HITS BLACKBOARD

One key to enabling collaborative multimodal interfaces like HKE is a run-time architecture that
permits the flexible intermixing of multiple modes of interaction and the maintenance of overall
dialogue and subdialogue histories. The HITS Blackboard serves this important integrating
function . It provides :

• support for modular design of knowledge sources

• a problem solving mechanism

• a communication medium for HITS knowledge sources

• a common mode-independent format for sharing information between knowledge
sources

• support for fine-grained integration of the problem-solving actions of the knowledge
sources

-
• a priority-based agenda control structure for scheduling the possible actions of the

knowledge sources

• a goal-oriented control structure for organizing the proposed actions of the

HITS Introduction 30

knowledge sources

The Basic Blackboard
The basic action of the blackboard is to schedule actions proposed by the knowledge sources.
Every time an entry is posted on the blackboard, all the knowledge sources have an opportunity
to examine the new posting and propose new actions for the blackboard to schedule. The
scheduler component of the blackboard chooses from the proposed actions and executes one.
The others normally remain on the agenda and are reconsidered at a later time. These actions
typically operate on the new posting (possibly in addition to older postings) and produce
additional new postings. The knowledge sources then have an opportunity to look at this new
posting and the process repeats.

The blackboard processing cycle starts when some external process injects a primitive event onto
the blackboard. This triggers the knowledge sources and the blackboard cycle takes over. A
primitive event may represent a user action (e.g., keyboard input, a mouse click, or other gesture)
or it may represent an event request from a knowledge source (e.g., to ask the user for some
information, to tell the user something, or to perform any of a wide variety of other potential
system actions).

A number of different perspectives help to illuminate the blackboard's operation. These include
viewing the blackboard as priority queues or as goal trees. From the perspective of a priority
queue, when a knowledge source proposes an action, it associates a priority or score with the
action. The higher the priority, the more likely this action is to help solve the current goal.
Priorities can be used to direct the search of the solution space in a propitious order. In a given
search we may be searching for the best solution to our problem, or we may merely be searching
for a good solution. If we are looking for the best solution, then we may have to explore the entire
solution space. In the latter case the heuristic ordering may allow us to avoid searching portions
of the solution space (based on knowledge gained earlier in the search).

In general, computation on the blackboard proceeds in a bottom-up fashion, with the knowledge
sources reacting opportunistically to the appearance of events. However, without some
organizational structure this type of computation can frequently become expensive and
unproductive. In HITS blackboard information is structured and maintained as a goal tree. The
goal tree serves several important functions : it provides a place to state which problem each
knowledge source is trying to solve and associate methods for recognizing adequate solutions
when they appear, to store heuristic information about how to efficiently organize the
computation, and to describes how knowledge sources relate to one another in terms of priority,
sequencing, and dependency.

The goal tree is primarily an and/or tree of goals in which sub-branches are allowed to be ordered
or unordered. In the case of an ordered-or subtree, goal solutions are attempted sequentially
until one succeeds or all goals fail. In the ordered-and subtree the goal solutions are attempted
sequentially until one fails or all succeed. These ordered subtree types allow the specification of
order dependencies between particular computations taking place on the blackboard. Unordered
subtrees have the same satisfaction conditions except processing is allowed to proceed in
parallel.

Each knowledge source that proposes to perform an action must indicate the goal in the goal tree
the action is intended to help solve. This action is then scheduled on a locally controlled agenda.
During each cycle of the blackboard the goal tree is searched for an unsolved goal with actions
scheduled to perform. The action is then performed and the result is reported back to the goal.
The goal decides whether the action was sufficient for solution. If so, the goal is marked as
solved and its supergoal is notified. This is the first method of goal satisfaction. The goal is
directly achieved as a result of executing an action scheduled on the goal itself. The supergoal
can now either accept this solution and move on or reject the solution and instruct the subgoal to
try again. The second method of goal satisfaction is through the satisfaction of associated
subgoals. This is treated in the same manner as direct satisfaction and the supergoal is notified.

HITS Introduction 31

Use of the Blackboard within HITS
The blackboard is used within HITS in the performance of two major tasks: parsing and
interpretation of information received from the users interaction with the system and
communication between system components.

As an example let's consider what follows from a user initiating the command "Tap Icon" to relate
the visual behavior of an icon to an object in the knowledge base. The command string is broken
down by the command processor into the type of command being performed and the arguments
specified. These constituents are then placed on the blackboard as depicted in Figure 15.
Several knowledge sources are activated by the appearance of this information. One knowledge
source is responsible for recognizing the type of action and linking it to its knowledge base
equivalent. Others are responsible for determining the correctness of the arguments to the
command and building partial command descriptions. Note that some operations simply add
information to an existing blackboard description (elaboration) and others create a new
description from existing descriptions (composition) . Once all the arguments have been
interpreted and accepted a description is built that contains enough information to perform the
action. Unless some other knowledge source intervenes this action is performed and the
resulting effects are described and placed back on the blackboard.

output:

Tapped unit and
chosen icon are
not the same type.
You may change
the tapped unif to
any o

cmd: TAP-ICON

You may change
the icon to any
of

Figure 15: HITS Blackboard Example

The modularity provided by the blackboard architecture allows multiple mechanisms to operate
on information during interpretation. In the example above a knowledge source that simply
checks the arguments for validity is successful in resolving the first argument. In many cases,
however, this simple checking mechanism will be unable to resolve the argument. The second

HITS Introduction 32

argument in the above command has been entered using the natural language phrase "the start
buttonH. This requires the activation of knowledge sources to handle the natural language input.
Figure 16 shows the information placed on the blackboard by Lucy during the process of
resolving this argument.

The public aspect of the blackboard allows other HITS knowledge sources to look at and
influence the information appearing on the blackboard. A knowledge source can react to the
information appearing on the blackboard passively (as a monitor of user activity), constructively
(deriving new information to place back onto the blackboard), or destructively (blocking
information on the blackboard from being processing by other knowledge sources). One
knowledge source within HITS which reacts in all these ways is the advisor. In the Tap Icon
example, the user has attempted to tap a dial icon (a continuous type icon) to a discrete value.
The advisor notices this discrepancy when the information appears on the blackboard in the form
of an executable command. The advisor then supplies several options: attempt to proceed as is,
select a discrete icon, or select a continuous tap variable. If either of the latter two options are
taken then the current executable command is blocked and a new description is constructed and
allowed to proceed.

<schedule advisor action>

Figure 16: Lucy Blackboard Processing

Figure 17 shows the HITS Blackboard Goal Tree. At a high level the goal tree is a specification
of the goals of the system while interacting with the user. Knowledge sources for interpretation of
user input operate under the INTERPRET goal, their relative order and dependencies are
determined by the subtree type of their supergoal. Knowledge sources that react to user input
(e.g. advisory functions and applications) operate under the RESPOND goal. In the "TAP ICON"

HITS Introduction 33

example, the successful interpretation of the command causes the application to schedule the
performance of the action on the STATE-CHANGE goal. The advisor also reacts to the
command by scheduling some advice for the ADVISE goal. Since the ADVICE goal precedes the
RESPOND goal in the goal tree the advice gets a chance to run first, thereby allowing it to block
the scheduled performance of the command if necessary.

Default lnterp

lnterp Response Default Response

discourse-interpretation pragmatics-interpretation

Figure 17: HITS Blackboard Goal Tree

HITS Introduction 34

SUMMARY

In this paper, we have explained the ideas motivating our research programme and introduced
HITS, an integrated set of tools for building collaborative multimedia interfaces. The most
important difference between HITS and the User Interface Management Systems (UIMS) to
which it might be compared to is the emphasis on the role of knowledge representation. HITS
provides an integrated knowledge base that covers a broad range of topics, all of which impinge
in significant ways on the design of collaborative multimedia interfaces. General domain­
independent knowledge is represented once and provided as part of HITS. HITS tools assist
users in the construction of domain-dependent knowledge. We have assumed that application
programs for which HITS-based interfaces are being built are themselves knowledge-based
systems and that applications and interfaces are being designed and built together. This
contrasts with other UIMS systems in which the application is viewed as a black box by the
interface and any relevant parts of it must be modeled explicitly. In HITS we attempt to avoid
duplicating the representation of the application in the interface.

Throughout the paper we have emphasized the knowledge-based parts of the interface. Thus,
although such standard interface capabilities as properly presented menus, scrolling windows,
and simple command interpreters are clearly important, we have focused on the more knowledge
intensive aspects of interface design: understanding natural language and gestures, generating
advice, modeling users and their tasks, and critiquing graphical design. Because HITS is a set of
integrated knowledge-based tools focused on design knowledge and semantic mappings
between interfaces and knowledge bases, it might be better characterized as what Foley
[5] terms a UIDE, User Interface Design Environment, and in fact we envision HITS evolving into
a General User Interface Design Environment, GUIDE.

Another unique aspect of HITS is its emphasis on allowing multiple input and output modalities
(pointing, sketching, touch, natural language, graphics, video) to be employed in an integrated
fashion by users. This permits interaction with HITS-designed interfaces in the ways most natural
for the tasks at hand, and allows us to explore new research questions about how users exploit
this freedom to mix modalities in ways best suited for a part icular tasks.

ACKNOWLEDGMENTS

The design and construction of HITS is a project of the Human Interface Laboratory at MCC. All
of the members of the laboratory are involved in its design and implementation. We want to
acknowledge their efforts, ideas, and assistance and thank them for making it such an
intellectually exciting activity. Portions of this paper are based on a presentation given at a
workshop on Architectures for Intelligent Interfaces [11] .

HITS Introduction 35

Members of the Human Interface Laboratory

Chinatsu Acne Linda Mitchell

Anthony Aristar Martha Morgan

Jim Barnett Maria Nasr

Bill Bohrer Michael O'Leary

Rich Cohen Jay Pittman

Jonathan Grudin Steve Poltrock

Will Hill Mosfeq Rashid

Jim Hollan Mark Rosenstein

Megumi Kameyama Supoj Sutanthavibul

Janet Kilgore Mark Tarlton

Carol Kroll Nong Tarlton

Bill Kuhlman Loren Terveen

Susann Luper-Foy Steven Tighe

lnderjeet Mani C. Unnikrishnan

Gale Martin Louis Weitzman

Paul Martin Wayne Wilner

Tim McCandless Kent Wittenburg
Jean McKendree Dave Wroblewski

Ken Zink

HITS Introduction 36

References

[1] Norman, D. A., S. W. Draper (editor). Cognitive Engineering. Lawrence Erlbaum
Associates, 1986.

[2] Lenat, D., R. V. Guha, & D. V. Wallace. The CycL Representation Language. Technical
Report, MCC Human Interface Laboratory, 1988.

[3] Hutchins, E. L., J. D. Hollan, & D. A. Norman. Direct Manipulation Interfaces.
Human-Computer Interaction 1:311-338, 1985.

[4] Hutchins, E. L., J. D. Hollan, & D. A Norman. Direct Manipulation Interfaces. In
D. A. Norman, & S. Draper (editor), User Centered System Design: New Perspectives on
Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[5] Foley, J.
personal communication.

[6] Hill, W. & J. R. Miller. Justified Advice. In Proceedings of the CHI '88 Conference on
Human Factors in Computing Systems. 1988.

[7] Hill, W. C. Advice Seeking, Giving, and Following at a Graphical Computer Interface.
PhD thesis, Northwestern University, 1988.

[8] Hollan, J. D., E. L. Hutchins, T. P. McCandless, M. Rosenstein, & L. Weitzman. Graphical
Interfaces for Simulation. In W. Rouse (editor), Advances in Man-Machine Systems Reseearch.
JAI Press, Connecticut, 1987.

[9] Lenat, D. B. & E. A. Feigenbaum. On the Thresholds of Knowledge. In Proceedings
IJCAI87. 1987.

[10] Masson, M., W, Hill, R. Guindon, & J. Conner. Misconceived Misconceptions. In
Proceedings of the CHI '88 Conference on Human Factors in Computing Systems. 1988.

[11] Hollan, J., J. Miller, E. Rich , & W. Wilner. Knowledge Bases and Tools for Building
Integrated Multimedia Intelligent Interfaces. In Architectures for Intelligent Interfaces: Elements
and Prototypes. 1988.

[12] Rumelhart, D. E., J. L. McClelland, & the PDP Research Group. Parallel Distributed .
Processing. MIT Press, Cambridge, Mass., 1986.

[13] Pitman, K. M. CREF: An Editing Facility for Managing Structured Text. Technical Report ,
MIT A.l. Memo 829, 1985.

[14] Hollan, J.D. , E. L. Hutchins, & L. Weitzman . Steamer: An Interactive lnspectable
Simulation-Based Training System. AI Magazine 5(2):15-27, 1984.

[15] Suchman, L. Plans and Situated Actions: The Problem of Human Machine
Communication. Cambridge: Cambridge University Press, 1987.

[16] Terveen, L. Making Interaction Accountable. Technical Report, MCC Human Interface
Laboratory, 1988.

[17] VanLehn, K., J. S. Brown, & J. Greeno. Competitive Arugmentation in Computational
Theories of Cognition. Technical Report, Xerox CIS-14, 1982.

1~003
MICROELECTRONICS AND
COMPUTER TECHNOLOGY
CORPORATION

3500 WEST BALCONES CENTER DR.
AUSTIN, TEXAS 78759
(512) 343-0978

